
D I S T R I B U T I O N  O F  T H E  E L E C T R O N  C O N C E N T R A T I O N  

A N D  W A V E  P R O C E S S E S  IN A P U L S E D  D I S C H A R G E  

R.  I .  S o l o u k h i n  a n d  Yu .  A .  Y a k o b i  

A quantitative Schlieren method for measuring the e lec t ron-dens i ty  gradient  using a l ase r  
source in the infrared range is described,  which guarantees measurement  of densities above 
1054 cm-2; a detailed observat ion of the profi le of the gas ionization in a pulsed discharge is 
likewise described.  Certain resul ts  are  presented of a study of the distribution of the e lec-  
t ron concentrat ion over the c ross  section of the discharge tube in a s t ra ight  argon discharge 
during the flow of discharge cur rent  and also during the subsequent stages of the p roces s .  
In o rder  to pe r fo rm time measurement  of the e lec t ron-dens i ty  gradients and to const ruct  
an overal l  p ic ture  of the p lasma distribution, the Schlieren method with a CO 2 l a se r  (10.6 t~) 
as a light source  was used. The measurements  that were ca r r i ed  out revealed a complex 
picture involving the formation of a ser ies  of success ive  radial  compress ion  waves that exist  
during a fair ly long per iod after  completion of the discharge.  

The p roces se s  that occur  in a s t ra ight  pulsed discharge are  current ly  once more at t ract ing attention 
in connection with the choice of the operat ing mode of powerful gas l ase rs  [1-4]. It seems  probable that 
in pulse modes not only the p r i m a r y  p roce s s  (the e lec t r ica l  discharge) but also a se r ies  of secondary  phe-  
nomena (shock waves,  recombination,  chemical  react ions ,  etc.) par t ic ipate  in the excitation of inversion.  
The existence of hydrodynamic per turbat ions in s t ra ight  d ischarges  was recorded  in a number of papers  
[5, 6]. Shock waves and compress ion  waves may evoke additional population inversion via ionization and 
subsequent electronic excitation of atoms and molecules.  Under these conditions densities of the order  of 
1016-10 i~ cm -3 are  of g rea tes t  interest ,  since at lower densities it is difficult to obtain a noticeable gain in 
a gas -d i scharge  laser ,  while at higher densit ies inversion is rapidly disrupted by collisions of the second 
kind. 

The re f rac t ive  index N of the p lasma is determined by the resul tant  contribution of its neutral  n o and 
charged n e components 

N - - i  = - - A n e ~ - ( B ~ - C / ~ ) n o  ( A  ~--- 4 . 4 6 . i 0 - 1 ~ )  
(1) 

Here )~ is the wavelength; B and C are  constants that are  charac te r i s t i c  for a given atom or ion. F r o m  
Eq. (1) it is evident that 

dN A~2, dN _ B -~ C 
dn e - -  dn0 -~- ( 2 )  

Consequently, the t ransi t ion to measurements  in the long-wave port ion of the spec t rum is of funda- 
mental significance, since under these conditions the sensit ivity to the e lectron component increases  abrupt-  
ly. Moreover ,  measurements  of the infrared range allow rela t ively low concentrat ions of e lect ron to be 
determined against the background of a predominant  neutral  component in a weakly ionized plasma.  The 
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appearance of an e lec t ron-dens i ty  gradient in the p lasma in a direct ion perpendicular  to the direct ion of the 
probing light beam leads to deflection of the beam through an angle 

= - -  A ~ ' ~ L V n e  (3) 

where L is the length of the perturbat ion region along the direction of the light beam. 

The scheme of the experimental  installation is depicted in Fig. 1. A CO 2 lase r  1 having a power rating 
of 20 W and gas circulat ion was used in the work; 2, 3 a re  the m i r r o r s  of the laser .  An irised diaphragm 
was introduced into the resona tor  cavity in order  to suppress  h igher -o rder  modes. This allowed the dimen- 
sions of the focal spot at the sys tem output to be reduced and likewise permi t ted  the elimination of beats 
that otherwise develop sporadical ly  in the l a se r  radiation.  The radiation exited through an aper ture  having 
a diameter  of 2 mm in one of the m i r r o r s .  

The p lasma crea ted  in the gas -d i scharge  tube 5 having barium fluoride windows was probed. The gas -  
discharge gap was 24 cm, and the inside diameter  of the tube was 17 mm. A s ta t ionary longitudinal glow 
discharge was created  in the tube, and pulse discharges  between the same electrodes  were per iodical ly  
superimposed on it. The presence  of a fixed cur ren t  channel ensures  symmet ry  of pulse discharges  relat ive 
to the tube axis and causes  good replicabil i ty of the conditions under which the discharges  occur.  The cu r -  
rent  of the glow discharge is produced by a rec t i f ie r  and is l imited by the r e s i s to r  R 2. The voltage dropped 
ac ros s  this r e s i s to r  likewise charges  the capaci tor  C. When a firing pulse is applied to the gr id  of the 
thyra t ron  T the capaci tor  d ischarges  into the discharge tube through the thyra t ron.  

The beam f rom the CO 2 lase r ,  af ter  passing through the tube, is incident on a salt  plate 6 which directs  
1% of the incident flux onto the lens 7 which is made of barium fluoride and has a focal distance of 30 cm; 
the lens focuses the radiation onto the blade of the "knife" 8. The dimensions of the focal spot are  0.3 mm; 
the knife covers  one-half  of the focal spot. The radiat ion is recorded  by the Ge(Au) photores is tor  9 ,which 
is cooled with liquid nitrogen. The dynamics of the discharge is r ecorded  according to a se l f - luminescence 
using a driven s t reak  camera  10 in the sl i t -sweep mode simultaneously with observat ion of the Schlieren 
effect. The experiment  was ca r r i ed  out for C = 0.5 ~F,  R 1 = + 10 k~, R 2 = 1400 k~, R 3 = 3 ~. 

A quantitative interpretation of the Schlieren effect was achieved as follows. The distribution of the 
illumination J of the focal spot along the x axis perpendicular  to the optic axis of the sys tem and the edge 
of the knife was determined by scanning the spot by the knife edge using a mic rome te r  screw. F r o m  the r e -  
sulting distributions J(x) a graph was plotted of the integral function 

x 

r (z) = I ] (z) dx 
0 

As a resul t  of the Sehlieren effect the quantity 

z = r (z) --  r (z0) 

was recorded,  where x 0 is the posit ion of the knife edge corresponding to the center  of the focal spot. This 
allowed the magnitude of the l inear displacement x - x  0 = ~ f  to be determined graphical ly,  where f is the 
focal distance of the lens; then the value of the e lec t ron-dens i ty  gradient dne/dr  can be determined in t e rms  
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of this  d i sp lacement ,  where  r is the d i s tance  f rom the 
tube axis  to the p robed  sec to r .  In view of the f ac t tha t  
even in a s t e a d y - s t a t e  opera t ing  mode the r ad ia t ion  
power  of a CO 2 l a s e r  f luctuates  within the l i m i t s  of 
f rom 10 to 20%, the ove r a l l  in tensi ty  was moni tored .  
Fo r  this  pu rpose  the l a s e r  was suppl ied f rom a r e c -  
t i f ied  unf i l t e red  vol tage at  a f requency of 100 Hz. 

At  the instants  co r re spond ing  to the z e r o - c r o s -  
s ings  of the vol tage ,  l as ing  c e a s e s ,  and t he r e fo re  the 
t ime  p a t t e r n  of the las ing cons i s t s  of s ha r p l y  s e p a r a t e d  
pu l ses  having a length ~ 7 msec  and a f requency  of 
100 Hz. The obse rva t ion  of the Sch l i e ren  effect  is 
c a r r i e d  out on the top of one of these  pu l s e s .  Since 
the dura t ion  of the sweep is 50 to 100 ~ s e c  tinder these  
condi t ions,  the va r i a t i on  of the ove r a l l  r ad i a t i on  in-  
tens ity during this  t ime  in terva l  may be neglec ted .  
The sweep l ine  is d i sp l aced  r e l a t i v e  to the no rma l  
pos i t ion  by an amount  equal to the height z 0 of the 

l a s ing  pu lse .  In the ca lcu la t ion  p r o c e d u r e  d e s c r i b e d  above the quanti ty z was r e p l a c e d  by the d imens ion -  
l e s s  r a t i o  z/z0, which a s s u r e d  independence of the r e s u l t s  obtained f rom fluctuat ions of l a s e r  intensi ty.  
Osc i l lograph ing  of the c u r r e n t  through the g a s - d i s c h a r g e  tube was p e r f o r m e d  in p a r a l l e l  with this  p r o c e d u r e .  

A c h a r a c t e r i s t i c  fea tu re  of the r e su l t i ng  o s c i l l o g r a m s  is the p r e s e n c e  of a second maximum of t he  
Sch l ie ren  s ignal  a f t e r  the c u r r e n t  has ended. The magnitude of this  s ignal  i nc r ea se s  with inc reas ing  pu lse  
cu r r en t  through the tube; F ig .  2 d i sp lays  o s c i l l o g r a m s  of the Sch l ie ren  s ignal  and the d i s cha rge  c u r r e n t  for  
p = 0.5 t o r t  and tube vo l tages  U = 2, 3, 4 kV for f r a m e s  1, 2, 3, r e s pe c t i ve l y ;  Fig .  3 shows the s ame  thing 
for U = 3 kV and p = 1, 2 t o r r  for  f r a m e s  1 and 2. 

H igh-speed  s l i t  sweeps  of the s e l f - l u m i n e s c e n c e  of the d i scha rge  r e g i s t e r  a s e r i e s  of intense r a d i a l  
pe r tu rba t i ons  ex is t ing  in the tube a f t e r  comple t ion  of the d i s c ha r ge .  An ana lys i s  of the o s c i l l o g r a m s  and 
sweeps  of the gas luminescence  shows that  the second ionizat ion max imum is a s s o c i a t e d  with a shock wave 
that  converges  toward  the cen te r .  The ve loc i ty  of the shock wave was ca lcu la ted  as  the r a t i o  between double 
the d i s tance  f rom a point nea r  the axis  to the wal l  and the t ime in terva l  between the f i r s t  and second max-  
ima. 

Let  us p r e s e n t  the va lues  of the ve loc i t i e s  W (km/sec)  of the shock waves  as  a function of the vol tage  
U (kV) and the p r e s s u r e  p (torr)" 

W =  2.7, 3.1, 3.4 for. U =  3, 4, 5 for p = 0.5 
W =  1.9 for U =  3, p = i 
W = t.4 for U = 3, p = 4 

As might be expected,  with inc reas ing  p r e s s u r e  the ave rage  shock-wave  ve loc i ty  d e c r e a s e s .  The 
o s c i l l o g r a m s  of the Sch l i e ren  s ignal  for  an inc rease  in p r e s s u r e  showed the p r e s e n c e  of a whole s e r i e s  of 
succes s ive  r a d i a l  p e r t u r b a t i o n s .  The h igh - speed  sweep at  these  p r e s s u r e s  l ikewise  shows the fo rmat ion  
of a s e r i e s  of s u c c e s s i v e  r ad i a l  c o m p r e s s i o n  waves exis t ing  during a t ime  that  is 5 to 20 t i m e s  as  long as 
the dura t ion of the d i scha rge ;  in Fig .  4 such a s e l f - l u m i n e s c e n c e  sweep of the d i scha rge  is shown for  p = 2 
t o r r ,  U = 3 kV. 

Osc i l lograph ing  of the t ime  dependences  of the Sch l i e ren  effect  for  a r a d i a l  d i s p l a c e m e n t  of t hep rob ing  
l a s e r  beam p a r a l l e l  to the tube axis  was c a r r i e d  out. When the beam c r o s s e d  the tube axis  the obse rved  
deviat ion z changed sign, which was evidence of the s y m m e t r y  of the d i scha rge  r e l a t i v e  to the axis  (Fig.  5 
d i sp lays  the r a d i a l  dependence of the Schl ie ren  s ignal) .  

F r o m  the r e s u l t s  of m e a s u r e m e n t s  at  va r ious  r a d i i  the r ad i a l  d i s t r ibu t ion  of the e l e c t r o n  densi ty  at 
va r ious  s tages  of the p r o c e s s  was p lo t ted  by ca lcu la t ing  the in tegra l  function 

dr dr 
0 
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Fig. 7 

F i g u r e  6 d i s p l a y s  the  p r o f i l e s  o b t a i n e d  in th i s  m a n n e r  a t  the  ins t an t  
c o r r e s p o n d i n g  to the  f i r s t  (a) and s e c o n d  (b) i on iza t ion  m a x i m a ,  a s  we l l  a s  
a t  an i n s t an t  when  the  c o n v e r g e n t  wave  has  not  y e t  a p p r o a c h e d  the  c e n t e r  
of  the  tube  (the ins t an t  of the  f i r s t  i on iza t ion  m a x i m u m  (c)). A t  low p r e s -  
s u r e s  the  wave  m e r e l y  " f l a t t ens  out"  the  i on i za t i on  p r o f i l e ,  wh i l e  f o r  an  
i n c r e a s e  in the  in i t i a l  p r e s s u r e  in the  d i s c h a r g e  tube  the  s h o c k - w a v e  f r o n t  
m a y  be o b s e r v e d  d i r e c t l y  a c c o r d i n g  to  the  shape  of the  e l e c t r o n - d e n s i t y  
p r o f i l e .  F i g u r e  7 shows  the d e p e n d e n c e  of the  m a x i m u m  ion i za t i on  n e on 
the  p r e s s u r e  p fo r  U = 3 kV and l i k e w i s e  on the v o l t a g e  U a c r o s s  the  tube  
a t  p = 0.5 t o r r  a t  the  ins t an t  c o r r e s p o n d i n g  to the  f i r s t  and  s e c o n d  m a x i m a  
on the  tube  a x i s .  

In p a r a l l e l  wi th  m e a s u r e m e n t  of  the  S c h l i e r e n  e f f ec t  i n t e r f e r o m e t r y  was  c a r . r i e d  out  of the  s a m e  p l a s -  
ma  in a mode  of p h o t o m e t r i c  count ing of the  bands  on a M i c h e l s o n  i n t e r f e r o m e t e r  u s i n g  a CO 2 l a s e r  a s  a 
l i gh t  s o u r c e .  The  r e s u l t s  o b t a i n e d  a r e  in good  a g r e e m e n t  wi th  t h o s e  p r e s e n t e d  above .  It shou ld ,  h o w e v e r ,  
be no ted  tha t  fo r  o p e r a t i o n  in a mode  of p h o t o e l e c t r i c  count ing  of  the  bands ,  d i s t o r t i o n s  a s s o c i a t e d  wi th  the  
S c h l i e r e n  e f f ec t  t ha t  is m a n i f e s t e d  s i m u l t a n e o u s l y  wi th  the  p h a s e  sh i f t  w e r e  o b s e r v e d  on the  o s c i l l o g r a m s .  
L e t  us  l i k e w i s e  note  the  f ac t  tha t  the  r e l a t i v e  r o l e  of the  S c M i e r e n  e f fec t  i n c r e a s e s  when the  t r a n s i t i o n  is 
made  to the  i n f r a r e d  r e g i o n  of the  s p e c t r u m .  

A c t u a l l y ,  the  m a g n i t u d e  of  the  p h a s e  sh i f t  A~ of a l igh t  wave  tha t  has  t r a v e r s e d  the d i s t a n c e  L in the 
p l a s m a  is 

h 2= "N (p = - - ~ (  - -  i ) L  = - -  2aAnj_,~, (4) 
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The Schlieren signal is proport ional  to the angle fl for  uniform illumination. 
and (4) yields 

k Vne 

A compar ison  of Eqs.  (3) 

a~ 2~ ~~ (5) 

It is useful to pe r fo rm a comparat ive est imate  of the sensit ivity of determining the e lectron concen-  
t rat ion by in te r fe romet ry  and using Schlieren measurements .  Let us assume that we are  able re l iably  to 
r eco rd  a f ract ion 1/ t  of the band. Then f rom Eq. (4) we have the following relat ionship for the minimal 
detectable e lectron concentration: 

rt rain ~. / A L k t  
(6) 

It is likewise natural  to adopt the possibi l i ty of regis ter ing  a change in overal l  intensity by the f r a c -  
tion 1 / t  as the cr i te r ion  for  the sensit ivity of the Schlieren method. F r o m  Eq. (3)we have the following 
resul t  for the minimal detectable e lec t ron-concent ra t ion  gradient:  

Vn rain = S / 2ALkS t /  (7) 

where S is the size of the focal spot. F rom this we have 

Vne rain ~, 

In the l inear  approximation Vne = n e / r  0, where r 0 is the effective radius of p lasma formation.  F r o m  
this the condition for  equality of the sensi t ivi t ies of the two methods can be writ ten in the fo rm 

ro S = 2]~ (9) 

The in ter ferometr ic  method is more  sensit ive for r0S >2f~, while the Schlieren method is more sen-  
sitive for r0S < 2 f l .  

The substitution of specific p a r a m e t e r s  of the descr ibed experiment  shows that the sensi t ivi ty of the 
Schlieren method is approximately four t imes as high in the case considered.  

Thus, the quantitative Schlieren method using a laser  source operating in the infrared range,  which 
has been descr ibed above, ensures  detailed observat ion of the state of the ionized gas in a pulse discharge.  
The observat ions which were ca r r i ed  out revea led  a complex pat tern  of the wave p r o c e s s e s  in the discharge 
plasma.  Radial compress ion  waves caused abrupt fluctuations of the e lectron concentrat ion in the discharge 
tube, and therefore  the phenomena descr ibed above may play an essential  role ,  for example, in the e lec -  
t r ica l  excitation of inverse population in gas l a se r s  operating in a pulsed supply mode. 
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